of the University of Texas, Austin, Texas and of Mr. James L. Roark in obtaining nmr spectra is gratefully acknowledged. We wish to thank Mrs. M. K. Ready,

Miss Carol J. Rawland, and Mr. Randall J. Rogers for experimental work in the preparation of some of the salts.

Notes

Contribution from the Department of Chemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061

$\label{eq:preparation} \begin{array}{l} \mbox{Preparation and Properties of} \\ \mbox{Pentafluorosulfanyliminosulfur Dichloride,} \\ \mbox{SF}_{5}N \mbox{=} SCl_{2} \end{array}$

By A. F. Clifford and R. G. GOEL

Received October 3, 1968

Pentafluorosulfanylamine, SF_5NH_2 , reacts with active halides such as SF_4 splitting out hydrogen halide.¹ It was of interest to see whether the reaction with sulfur dichloride would yield the simple substitution product $SF_5N=S$ or some more complex compound.

Experimental Section

Materials and Equipment.—Sulfur dichloride, obtained from Hooker Chemical Co., was used without further purification. Technical grade silver difluoride and silver oxide were used as obtained from Harshaw Chemical Co. Pentafluorosulfanylamine, $SF_{\delta}NH_2$, was prepared as described by Clifford and Duncan.²

Reactions were carried out in Hoke stainless steel cylinders equipped with Model Y327A series needle valves. A copper highvacuum system equipped with Whitey Model KS41 series control valves and Kel-F traps was used for preparing pentafluorosulfanylamine. A Pyrex glass high-vacuum system was used for handling the reactants and products. Stopcocks and joints were greased with Kel-F No. 90 grease. Swagelok unions afforded vacuum-tight glass-to-metal connections.

Preparation and Properties of Pentafluorosulfanyliminosulfur Dichloride.—Pentafluorosulfanylamine (0.935 g) and SCl₂ in a mole ratio of slightly less than 1:2 were allowed to react in a 30ml stainless steel cylinder with no solvent at room temperature for 2 days. The principal volatile reaction products were HCl and a pale yellow liquid (1.45 g, 90%) subsequently identified as SF₅NSCl₂. Traces of SiF₄, NSF₃, SOF₂, and some unreacted SCl₂ were recovered, but no unreacted SF₅NH₂. The inside of the reaction cylinder was found to be coated with a yellow solid containing 4.26% sulfur with traces of fluorine.

When equimolar quantities (5.82 mmol) were allowed to react under the same conditions, much NSF₃ was recovered along with SiF₄. Some SF₅NH₂ was also recovered and smaller yields of SF₅NSCl₂ were obtained than with the 1:2 ratio of reactants. The SF₅NSCl₂ was collected in a -45° trap, which allowed the more volatile by-products to pass through. Repeated trap-totrap distillation was necessary to free the product from SF₅NH₂.

Elemental analysis was difficult because of the great susceptibility of the compound to hydrolysis but yielded the following results. Anal. Caled for SF_5NSCl_2 : S, 26.2; N, 5.73; Cl, 29.1. Found: S, 28.1; N, 6.75; Cl, 28.95. Although the liquid reacted very rapidly with mercury making vapor-pressure

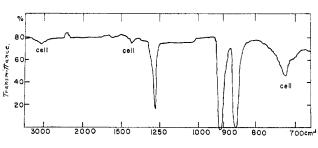


Figure 1.—Infrared absorption curve for SF5NSCl₂.

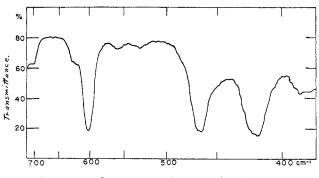


Figure 2.—Infrared absorption curve for SF5NSCl₂.

measurements difficult in the equipment in use, it was determined that the vapor pressure was about 1 cm at room temperature. Vapor density studies indicated the molecular weight to be about 229 whereas SF_8NSCl_2 requires 244. However, mass spectral peaks at m/e 210 and 208, in an approximate ratio of 3:1, which are attributable to $S_2F_8NCl^+$ support the assignment of the formula as $S_2F_8NCl_2$. No freezing point was determined but the product remained liquid at -78° .

The infrared spectrum of SF₅NSCl₂ in the 3000–700-cm⁻¹ region was obtained on a Model 137 Perkin-Elmer Infracord spectrophotometer using a 10-cm gas cell with NaCl windows. The spectrum in the 700–375-cm⁻¹ region was obtained with a Beckman IR5A spectrophotometer with CsBr optics using a 10-cm cell with KBr windows. Neither the NaCl nor the KBr windows were etched by the sample. The spectrum was found to bear a remarkable similarity to that of SF₅NSF₂ with the characteristic absorption bands at 760 and 714 cm⁻¹ for =SF₂ being replaced by bands at 475 and 415 cm⁻¹, presumably for =SCl₂ group stretching frequencies.

When equimolar amounts of SF_5NH_2 and SCl_2 (6.28 mmol) were allowed to react at room temperature for 3 days in a 75-ml cylinder containing 10 ml of anhydrous diethyl ether, no SF_5-NSCl_2 was found. About half of the SF_5NH_2 had separated into NSF_3 and HF. The remainder could not be separated from the ether by trap-to-trap distillation.

Reaction with AgF₂.—When 0.5 g of SF₅NSCl₂ was heated with AgF₂ in a steel cylinder at 100° for 1 hr and then kept at 50° for 24 hr, the principal volatile product was found to be SF₅NSF₂, identified by its infrared spectrum.¹ The yield was nearly quantitative and the reaction is presumed to be

 $SF_5NSCl_2 + AgF_2 \longrightarrow SF_5NSF_2 + AgCl + 0.5Cl_2$

⁽¹⁾ A. F. Clifford and J. W. Thompson, Inorg. Chem., 5, 1424 (1966).

⁽²⁾ A. F. Clifford and L. C. Duncan, ibid., 5, 692 (1966).

Although the Cl_2 was not identified, silver chloride was found in the solid.

Reaction with Ag₂O.—In an attempt to produce the compound SF_5NSO^1 about 0.2 g of SF_5NSCl_2 was condensed onto an excess of Ag₂O (about 5 g) and the cylinder was heated to 50° for 24 hr. No SF_5NSO was found, the principal products being equimolar amounts of NSF_3 and SOF_2 . Silver chloride was found in the solid.

Discussion

Although no free sulfur or S_2Cl_2 was found among the products of the reaction leading to SF_5NSCl_2 , the presence of sulfur in some form in the yellow deposit on the inside of the reaction cylinder suggests that the reaction was

$$SF_5NH_2 + 2SCl_2 \longrightarrow SF_5NSCl_2 + 2HCl + S$$

or perhaps

 $2SF_{5}NH_{2} + 4SCl_{2} + Fe \longrightarrow 2SF_{5}NSCl_{2} + 4HCl + "FeS_{2}"$

The identity of the compound is proved by the combined evidence of the elemental analysis, mass spectral evidence, and particularly the infrared spectrum. The sharp peak at 1240 cm⁻¹ may confidently be assigned to the N=S stretch. (The N=S stretch in SF₅N=SF₂ occurs¹ at 1313 cm⁻¹.) Similarly, the peaks at 913, 862, and 600 cm⁻¹ are highly characteristic of the SF₅ group, while the bands at 760 and 714 cm⁻¹, attributed to the SCl₂ group, are very close to those observed by Lustig³ for the compound CF₃NSCl₂.

Acknowledgment.—This work was carried out under NSF Grant No. GP-580.

(3) M. Lustig, Inorg. Chem., 5, 1317 (1966).

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Simple, High-Yield Preparations of Chlorodifluoramine and Difluorodiazine

By Leon M. Zaborowski, Kent E. Pullen, and Jean'ne M. Shreeve

Received January 24, 1969

Chlorodifluoramine has been prepared by reaction of difluoramine with boron trichloride,¹ phosgene,² or hydrogen chloride;² by treatment of a mixture of sodium azide and sodium chloride with fluorine;³ by reaction of chlorine trifluoride with ammonium fluoride;⁴ by reaction of chlorine and difluoramine in the presence of potassium fluoride;⁵ and by chlorination of KOCF₂NF₂.⁶

Difluorodiazine has been prepared by various tech-

(3) T. A. Austin and R. W. Mason, Inorg. Chem., 2, 646 (1963).

niques: the thermal decomposition of fluorine azide,⁷ electrolysis of ammonium hydrogen fluoride,⁸ reaction of nitrogen trifluoride with mercury vapor in an electric discharge,⁹ dehydrofluorination of difluoramine,¹⁰ treatment of a solution of N,N-difluorourea with a concentrated potassium hydroxide solution,¹¹ reaction of sodium azide and fluorine,¹² decomposition of N₂F₃Sb₂-F₁₁,¹³ and reaction of tetrafluorohydrazine and excess aluminum chloride at 78°.¹⁴

Although both chlorodifluoramine (NF₂Cl) and difluorodiazine (N₂F₂) have been prepared in a variety of ways, a convenient high-yield synthesis for each compound was not reported. A number of these preparations suffer the disadvantage of $low^{4,8,9,11,12,14}$ or erratic^{2,3} yields or involve a somewhat circuitous route.^{6,13} Explosions have occurred during their preparation.^{8,4,7} Difluoramine is used frequently as a source of NF₂ in several of the above preparations;^{1,2,5,10} however, this reagent is extremely shock sensitive as a solid and care must be exercised in handling.⁵

We describe herein a convenient method for the preparation of chlorodifluoramine and difluorodiazine in reproducibly good yields by the photolysis of tetrafluorohydrazine and thionyl chloride or bromine, respectively.

Experimental Section

In the following procedures a standard glass vacuum line equipped with a null-point pressure device such as a Booth-Cromer¹⁵ pressure gauge or a spiral gauge was used.

Infrared spectra were recorded with a Beckman IR-5A or Perkin-Elmer 621 spectrophotometer by using a 5-cm gas cell equipped with NaCl or KBr windows. Fluorine-19 nmr spectra were obtained on a Varian HA-100 spectrometer. Mass spectra were obtained with a Perkin-Elmer Hitachi RMU-6E mass spectrometer at an ionization potential of 70 eV. The ultraviolet light source was 450-W lamp equipped with a Vycor filter (Hanovia L-679A36, Engelhard Hanovia, Inc., Engelhard, N. J.).

For gas chromatographic separations a 25 ft \times 0.25 in. copper column packed with 20% Kel-F-3 polymer oil or FC-43 (3M Co.) on acid-washed Chromosorb P was used at 25 or -63°. In some cases, fractional condensation was used to effect crude separations.

Tetrafluorohydrazine (Air Products Co.) and reagent grade bromine were used without further purification. Thionyl chloride was purified by a trap-to-trap distillation.

Caution! Care should be exercised in handling tetrafluorohydrazine, chlorodifluoramine, and difluorodiazine since nitrogenhalogen compounds are known to exhibit explosive properties. Any apparatus used should be clean and free of organic materials.

Preparation of NF₂Cl.—SOCl₂ (0.714 g, 0.006 mol) and N₂F₄ (0.104 g, 0.001 mol) were condensed into a 850-ml Pyrex vessel equipped with a water-cooled quartz probe. After the mixture had warmed to room temperature, it was photolyzed through a Vycor filter for about 1 hr and then passed through a series of

(10) E. A. Lawton, D. Pilipovich, and R. D. Wilson, Inorg. Chem., 4, 118 (1965).

⁽¹⁾ R.C. Petry, J. Am. Chem. Soc., 82, 2400 (1960).

⁽²⁾ E. A. Lawton and J. Q. Weber, *ibid.*, **85**, 3595 (1963).

⁽⁴⁾ D. M. Gardner, W. W. Knipe, and C. J. Mackley, *ibid.*, 2, 413 (1963).
(5) W. C. Firth, Ir., *ibid.*, 4, 254 (1965).

⁽⁶⁾ G. W. Fraser and J. M. Shreeve, *ibid.*, 6, 1711 (1967).

⁽⁷⁾ J. F. Haller, Ph.D. Thesis, Cornell University, 1942.

⁽⁸⁾ C. B. Colburn, F. A. Johnson, A. Kennedy, K. McCallum, L. C. Metzger, and C. O. Parker, J. Am. Chem. Soc., 81, 6397 (1959).

⁽⁹⁾ J. W. Frazer, J. Inorg. Nucl. Chem., 11, 166 (1959).

⁽¹¹⁾ F. A. Johnson, ibid., 5, 149 (1966).

⁽¹²⁾ H. W. Roesky, O. Glemser, and D. Bormann, Chem. Ber., 99, 1589 (1966).

⁽¹³⁾ J. K. Ruff, Inorg. Chem., 5, 1791 (1966).

⁽¹⁴⁾ G. L. Hurst and S. I. Khayat, J. Am. Chem. Soc., 87, 1620 (1965).

⁽¹⁵⁾ S. Cromer, "The Electronic Pressure Transmitter and Self Balancing Relay," MDDC-803, Atomic Energy Commission, Declassified March 20, 1947.